مهندسی مکاترونیک بازشناسی اشیا مبتنی بر سازوکار قشر گیجگاهی مغز |
بازشناسی اشیا همواره از اهمیت بسیار بالایی برخوردار بوده است. تاکنون تحقیقات بسیار زیادی پیرامون بازشناسی اشیا ارائه شده است، که هرکدام نقطه های ضعف و قدرت مختص به خود را دارا می باشند. با وجود قدمت زیاد این زمینه و گستردگی روش های ارائه شده، روشی که بتواند ادعا نماید در تمامی شرایط دارای کارکردی بهتر از بقیه روش ها می باشد گزارش نشده استو
در دهه های اخیر و با پیشرفت روش های یادگیری ماشین تلاش ها برای حل مساله به روش های محاسباتی بیشتر شده است چرا که این روش ها از ریاضیات و آمار جهت تمایز میان الگوها استفاده می کنند. با این وجود، توسعه روش های ماشینی به تنهایی قادر به ارائه بهترین روش جهت حل این گونه مسایل نیستند. استخراج ویژگی های مناسب تاثیر زیادی در کارایی این الگوریتم ها دارند. این روش ها با وجود اینکه در سال های اخیر توانسته اند با به کارگیری بهترین روش ها به نتایج قابل قبولی دست یابند، ولی همچنان در حل پاره از مسایل با مشکلاتی روبرو بوده اند. از آنجا که انسان ها و PESTAN(به خاطر محدودیت سایت در درج بعضی کلمات ، این کلمه به صورت فینگیلیش درج شده ولی در فایل اصلی پایان نامه کلمه به صورت فارسی نوشته شده است)داران بهترین و دقیق ترین سیستم بینایی را دارا می باشند، ساخت سیستمی که بازشناسی اشیا را در مغز شبیه سازی کند ایده جالبی خواهد بود.
قشر بینایی در مغز انسان در قطعه پس سری قرار گرفته است و حدود 10 تا 20 درصد از سطح جسم خاکستری را تشکیل می دهد. بیشترین مطالعه در مورد مغز انسان روی این قسمت صورت گرفته است و نتیجه این مطالعه ها به ارائه مدل های محاسباتی و زیستی مختلفی منجر شده است. یکی از نظریه هایی که امروزه بسیار مورد توجه قرار گرفته است، فرضیه ساختار سلسله مراتبی در قشر بینایی است. طبق این نظریه اطلاعات در قشر بینایی مغز به صورت سلسله مراتبی پردازش می شوند، به نحوی که در لایه های اولیه، خصوصیات سطح پایین مانند لبه و در سطوح بالاتر خصوصیات سطح بالاتر مانند خطوط دور شی و بافت ها پردازش می شود. هدف در این پایان نامه این است که با الهام گرفتن از چنین مکانیزمی که در مغز انجام می شود بتوانیم به یک چارچوب مناسب جهت بازشناسی اشیا دست پیدا کنیم.
هدف اصلی در این پایان نامه، استخراج ویژگی های اشیا، با بهره گرفتن از روشی الهام گرفته از دستگاه زیستی مغز برای استخراج ویژگی ها و به کار بستن آن برای حل مسایل مطرح در بازشناسی اشیا می باشد. ساختار این پایان نامه در ادامه بدین صورت می باشد که در فصل اول نگاهی گذرا به مدل ها و نگره های مرسوم در بازشناسی اشیا، خواهیم انداخت. سپس در فصل دوم به توصیف دستگاه بینایی انسان و لایه های زیستی قشر بینایی می پردازیم. در فصل سوم محاسباتی و پیاده سازی لایه های مختلف آن توصیف و بررسی می شود و سرانجام در فصل چهارم، آزمایش ها و نتیجه های آن بررسی شده است. در پایان نیز جمع بندی و کارهای آتی آورده شده است.
فصل اول
بازشناسی اشیا
در این بخش پس از مروری کوتاه بر مفاهیم اولیه، سعی شده است که قوانین، نگره ها و مدل های بازشناسی اشیا به شکل خلاصه بیان شود. در ادامه، نظریه ها و مدل
خرید فایل متن کامل این پایان نامه :
های محاسباتی بازشناسی اشیا که ایده اصلی آنها از سیستم بینایی گرفته شده است نیز مورد بررسی قرار خواهند گرفت. همچنین چالش های موجود بر سر راه بازشناسی اشیا و اینکه سیستم های کنونی بازشناسی اشیا تا چه حد پاسخگوی نیاز جامعه امروزی به وجود هوش مصنوعی می باشند، مورد مطالعه قرار می گیرد.
1- بازشناسی اشیا
بازشناسی اشیا به معنای یافتن یک شی در یک تصویر است. انسان قادر است که بسیاری از اشیای پیرامون خود را بدون کوچکترین مشکلی بازشناسی کند، هرچند ممکن است که این اشیا در حالت های گوناگون و با زوایای دید مختلف و همچنین در اندازه های متفاوت باشند. حتی انسان قادر است اشیا را در حالتی که بخش هایی از آنها را نمی بیند، یا شی دیگری در مسیر دیدش قرار گرفته را نیز بازشناسی کند. اگرچه این امر برای انسان و PESTAN(به خاطر محدودیت سایت در درج بعضی کلمات ، این کلمه به صورت فینگیلیش درج شده ولی در فایل اصلی پایان نامه کلمه به صورت فارسی نوشته شده است)داران بسیار ساده و عملی است اما در نوع خود یک فرایند محاسباتی بسیار مشکل و پیچیده است. و حل مسایل بازشناسی اشیا کلیدی ارزشمند برای ساخت ماشین های هوشمند نسل آینده است.
1-1- یادگیری ماشین
2-1- بازشناسی الگو
در حالت کلی هر توصیف کیفی یا کمی از یک موضوع را می توان الگو نامید. الگوهای بصری را می توان به صورت ترکیبی از المان های تصویر که هرکدام از آنها دارای سطح روشنایی خودشان هستند، در نظر گرفت. هدف کلی از شناسایی خودکار الگوهای بصری، انتساب نمونه ای از یک الگو که سیستم قبلا آن را تجربه نکرده است به یکی از الگوهایی که قبلا برای سیستم معرفی شده اند، می باشد. این انتساب براساس تحلیل ویژگی های الگوی ورودی و کلاس های موجود انجام می گیرد. رسیدن به این هدف کار مشکلی است، زیرا ممکن است الگوی جدید (تصویر ورودی) نسبت به نمونه های قبلی تغییرات زیادی داشته باشد. این تغییرات می توانند ناشی از شرایط محیطی در هنگام تهیه تصویر و یا مربوط به تغییرهای اجتناب ناپذیر در خود الگو باشند. از جمله این تغییرها می توان به نویز وسیله گیرنده تصویر و یا تار بودن تصویر در اثر تنظیم نبودن دوربین اشاره کرد. تغییر در خود الگو هم ممکن است در اثر مرور زمان به وجود آمده باشد.
اولین گام در بازشناسی الگو، جمع آوری شمار مناسبی نمونه از الگوهای مورد نظر (به طور مثال تصویرهای اشیایی که قرار است بازشناسی شوند) است. این بخش زمان زیادی از فرایند طراحی سیستم بازشناسی الگو را به خود اختصاص دهد و گاهی اوقات با مشکلاتی همراه است. پس از جمع آوری نمونه های لازم، باید اقدام به انتخاب نوع ویژگی کرد. انتخاب نوع ویژگی نیازمند دانش اولیه در مورد الگوها است. توانمندی ویژگی برای جداسازی نمونه های کلاس های مختلف، معیار انتخاب آن است. پس از تعیین نوع ویژگی، باید روش یادگیری را انتخاب کرد. روش یادگیری می تواند از نوع بدون نظارت، با نظارت و یا ترکیبی باشد. در یادگیری با نظارت، هر الگو از مجموعه داده، با یک برچسب کلاسی همراه است. هدف این است که براساس نمونه های موجود، مدل طبقه بندی را طوری بسازیم که بتواند نمونه هایی را که تاکنون ندیده است با کمترین خطا در کلاس مربوط به خودشان دسته بندی کند. در یادگیری بدون نظارت، الگوها برچسب کلاسی ندارند و براساس شباهت شان در دسته های یکسان قرار می گیرند.
فرم در حال بارگذاری ...
[یکشنبه 1400-05-10] [ 07:30:00 ق.ظ ]
|